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SUMMARY

Inferring brain connectivity network and quantifying the significance of interactions between brain regions
are of paramount importance in neuroscience. Although there have recently emerged some tests for graph
inference based on independent samples, there is no readily available solution to test the change of brain
network for paired and correlated samples. In this article, we develop a paired test of matrix graphs to infer
brain connectivity network when the groups of samples are correlated. The proposed test statistic is both
bias corrected and variance corrected, and achieves a small estimation error rate. The subsequent multiple
testing procedure built on this test statistic is guaranteed to asymptotically control the false discovery
rate at the pre-specified level. Both the methodology and theory of the new test are considerably different
from the two independent samples framework, owing to the strong correlations of measurements on the
same subjects before and after the stimulus activity. We illustrate the efficacy of our proposal through
simulations and an analysis of an Alzheimer’s Disease Neuroimaging Initiative dataset.

Keywords: Brain connectivity analysis; Gaussian graphical model; Matrix variate normal distribution; Multiple testing;
Partial correlation; Variance correction.

1. INTRODUCTION

Brain functional connectivity reveals the intrinsic functional architecture of brains by measuring corre-
lations in neurophysiological recordings of brain activities (Varoquaux and Craddock, 2013). Numerous
studies have found that functional connectivity alters for individuals with neurological disorders, such as

†The first two authors share the co-first authorship.
∗To whom correspondence should be addressed.

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/22/2/402/5601317 by U

niv of Southern C
alifornia user on 14 April 2021



Paired test of matrix graphs 403

Alzheimer’s diseases (AD) and autism spectrum disorder (Hedden and others, 2009; Rudie and others,
2013), or after experiencing stimulus activities such as stress or therapy (Peck and others, 2004; van Marle
and others, 2010). The brain connectivity network is believed to hold crucial insight to help understand
the pathologies of neurological disorders and to develop targeting treatment (Fox and Greicius, 2010;
Quaedflieg and others, 2015).

Brain functional connectivity is commonly encoded as a network, or graph, with nodes representing
brain regions, and links representing interactions and correlations between regions. Among multiple cor-
relation measures, partial correlation is a well-accepted and frequently used metric, and correspondingly,
the connectivity network is portrayed by a partial correlation matrix (Ryali and others, 2012; Chen and
others, 2013). Current mainstream imaging modalities to study functional connectivity include electroen-
cephalography (EEG), electrocorticography (ECoG), and resting-state functional magnetic resonance
imaging (fMRI). After proper preprocessing, the resulting imaging data for each subject is summarized in
the form of a location by time matrix, from which a partial correlation matrix is constructed to characterize
brain connectivity.

A central problem in connectivity analysis is inference. Unlike network estimation (Ahn and others,
2015; Chen and others, 2015; Kang and others, 2016a; Qiu and others, 2016; Wang and others, 2016),
network inference aims to directly quantify the statistical significance of individual links or their differ-
ences, meanwhile explicitly controlling for the false discovery. Recently there have been proposals of
partial correlation matrix-based network inference for vector-valued data following a normal distribution
(Liu and others, 2013; Xia and others, 2015), or matrix-valued data following a matrix normal distribution
(Chen and Liu, 2019; Xia and Li, 2017, 2019). For brain connectivity analysis, the data obtained from
EEG, ECoG, or fMRI are of a matrix form, and the primary scientific interest is on the spatial but not
the temporal correlation patterns of the brain. Directly applying the tests for vector-valued data to infer
the spatial patterns ignores the temporal correlations among the columns of the matrix data, and is to
result in distorted test size and false discovery rate (FDR) (Xia and Li, 2017). Whitening can alleviate
this problem, and in effect transforms the matrix data back to the vector case (Narayan and others, 2015).
However, it does not utilize the data efficiently, would result in loss of power, and is also computationally
intensive (Xia and Li, 2019). Alternatively, Chen and Liu (2019) and Xia and Li (2017) directly tackled
inference of the matrix-valued data under the one-sample testing scenario, and Xia and Li (2019) tackled
the two-sample scenario where the two groups of samples are independent.

In addition to inference about brain network alternation across independent subject groups, it is of equal
interest and importance to infer the change of brain network of the same group of subjects before and
after a “stimulus” activity, which could be a treatment, a disease conversion, or a different experimental
condition. For instance, Peck and others (2004) studied brain connectivity activities in auditory and motor
cortices of aphasic patients before and after a therapy. Gianaros and others (2008), van Marle and others
(2010), and Quaedflieg and others (2015) studied amygdala-centered connectivity patterns in healthy
subjects before and after the experimentally induced stress. Cai and others (2015) studied alterations in
brain functional networks in patients with primary angle-closure glaucoma before and after the surgery.
Kang and others (2016b) studied brain connectivity activities in left and right inferior frontal gyrus areas
of the same subjects under different sleeping conditions. Ficek and others (2018) studied changes of
functional connectivity before and after a language intervention therapy. In Section 5, we aim to identify
the connectivity patterns that differ before and after a patient converted to AD. The two-sample test of
Xia and Li (2019) does not directly apply to those studies, because of the strong correlations of brain
measurements on the same subjects before and after the stimulus. For instance, a positive correlation
before and after the stimulus would reduce the variance of the partial correlation difference between the
two groups, causing the two-sample test to overestimate the variance and resulting in a low test power. On
the contrary, a negative correlation would inflate the variance, causing the two-sample test to underestimate
the variance and resulting in an inflated false discovery.
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In this article, we develop a paired test of matrix graphs to infer brain connectivity network when the
groups of samples are correlated, such as in the scenario of before and after the stimulus. The key of
our proposal is an innovative variance correction procedure that incorporates the spatial and temporal
dependency between the paired samples. The proposed test statistic is both bias corrected and variance
corrected, and is shown to achieve a sufficiently small estimation error rate asymptotically. This in turn
ensures that the subsequent multiple testing procedure built on this test statistic can asymptotically control
the FDR at the pre-specified level. Our proposal extends the two-sample test of Xia and Li (2019), but
is considerably different. This extension is far from trivial, and the theoretical investigation of the paired
test is much more involved, as one needs to carefully evaluate both within-sample and between-sample
correlations. To our knowledge, there is no existing graph inference procedure for paired matrix samples,
and our proposal offers a timely response to an important problem of both scientific and methodological
interest.

The rest of the article is organized as follows. Section 2 presents the formulation of the hypothesis
testing problem, the proposed test statistic, the variance correction procedure for the paired samples,
and the multiple testing procedure. Section 3 studies the corresponding asymptotic properties. Section 4
examines the empirical performance of the proposed test through simulations, and Section 5 analyzes a
real fMRI dataset. The Supplementary material available at Biostatistics online collects all the technical
assumptions, proofs, and additional numerical results.

2. PAIRED TEST

2.1. Problem formulation

Let X (t) denotes the p × q matrix observed at time point t, t = 1, 2. In brain connectivity analysis,
X (t) denotes the spatial–temporal imaging data before (t = 1) and after (t = 2) a stimulus activity or
conversion, and each X (t) corresponds to p brain regions and the time course data of each region is of
length q. We assume {X (1), X (2)} follows a matrix normal distribution, i.e.,

(
vec{X (1)}
vec{X (2)}

)
∼ Normal

(
02pq, �

)
, with � =

(
�S1 ⊗ �T1 �S1,2 ⊗ �T1,2

�T
S1,2

⊗ �T
T1,2

�S2 ⊗ �T2

)
. (2.1)

Without loss of generality, the mean is assumed to be zero, ⊗ is the Kronecker product, and vec(·) is
the operator that stacks the columns of a matrix into a vector. Furthermore, �St ∈ IRp×p denotes the
covariance matrix of the spatial regions, �Tt ∈ IRq×q denotes the temporal covariance matrix of the time
course data, at t = 1, 2, respectively, and �S1,2 and �T1,2 denote the between-sample spatial and tem-
poral covariance, respectively. When �S1,2 ⊗ �T1,2 = 0, (2.1) reduces to the independent two-sample
setting of Xia and Li (2019). We remark that, the matrix normal distribution has been frequently adopted
in numerous applications involving matrix-valued data (Yin and Li, 2012; Leng and Tang, 2012), and
is also scientifically plausible in neuroimaging analysis (Smith and others, 2004; Friston and others,
2007). Moreover, Aston and others (2017) developed a test to check if the data conform with the Kro-
necker product structure. In Section 4.2, we further carry out sensitivity analysis, and show that our
proposed test works reasonably well even when the data deviate from the matrix normal distribution
(2.1).

Let �St = �−1
St

= (ωSt ,i,j)
p
i,j=1 denote the spatial precision matrix, DSt denotes the diagonal matrix of �St

and RSt = D−1/2
St

�St D
−1/2
St

= (ρSt ,i,j)
p
i,j=1 denote the spatial partial correlation matrix. In brain connectivity

analysis, the primary interest is to infer the connectivity network characterized by the spatial partial
correlation matrix. The temporal covariance or precision matrix is of little interest in this context and is to
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be treated as a nuisance parameter. Consequently, we formulate our inference problem as simultaneously
testing

H0,i,j : ρS1,i,j = ρS2,i,j versus H1,i,j : ρS1,i,j �= ρS2,i,j, for 1 ≤ i < j ≤ p. (2.2)

We next derive the test statistic and the associated variance correction to account for the correlations of
the paired samples.

2.2. Test statistic

Consider n pairs of samples
{

X (1)

k , X (2)

k

}n

k=1
from the joint distribution (2.1).To construct the test statistic for

(2.2), we first remove the temporal correlations by the linear transformation Y (t)
k = X (t)

k �
−1/2
Tt

, k = 1, . . . , n,
t = 1, 2, and

(
vec{Y (1)}
vec{Y (2)}

)
∼ Normal

(
02pq,

(
�S1 ⊗ I q �S1,2 ⊗ PT1,2

�T
S1,2

⊗ PT
T1,2

�S2 ⊗ I q

))
, (2.3)

where PT1,2 = �
−1/2
T1

�T1,2�
−1/2
T2

denotes the between-sample temporal covariance matrix of the trans-
formed samples. Clearly, for the independent case, �S1,2 ⊗ PT1,2 = 0. In practice, �Tt and �T1,2 are
generally unknown. There are multiple ways to estimate �Tt , or equivalently, �Tt = �−1

Tt
. Examples

include the sample covariance estimator, the banded covariance estimator (Bickel and Levina, 2008), the
adaptive thresholding estimator (Cai and Liu, 2011) for �Tt , or the Clime estimator (Cai and others, 2011)
for �Tt . We adopt the banded estimator in this article, given its competitive performance in both the one-
sample test and the independent two-sample test under the matrix normal distribution (Xia and Li, 2017,
2019). In the following, we first derive the test statistic with known �Tt and PT1,2 , which helps simplify
the notations considerably. We then extend it by plugging in an estimated �Tt and PT1,2 . Accordingly, we
will add the superscript (d) in the resulting statistics to represent this scenario when �Tt and PT1,2 are
estimated given the data. In Section 3, we show that the test statistics under the known �Tt , PT1,2 and
the estimated �Tt , PT1,2 have the same asymptotic property. Consequently, they lead to the same multiple
testing procedure with the guaranteed asymptotic control of false discovery.

The construction of our test statistic is based on the fact that, under the normal distribution, the precision
matrix can be described through the regression model (Anderson, 2003),

Y (t)
k ,i,l = Y (t)T

k ,−i,lβ
(t)
i + ε

(t)
k ,i,l , 1 ≤ i ≤ p, 1 ≤ l ≤ q, 1 ≤ k ≤ n, t = 1, 2, (2.4)

where the error term ε
(t)
k ,i,l ∼ N

(
0, σSt ,i,i − �St ,i,−i�

−1
St ,−i,−i�St ,−i,i

)
and is independent of Y (t)

k ,−i,l , and the
subscript −i means the ith entry is removed from a vector, or the ith row or column removed from a matrix.
The regression coefficient β

(t)
i can be estimated using Lasso or other methods, as long as the estimator

β̂
(t)

i satisfies the regularity condition (A5) or (A6) in the Supplementary material available at Biostatistics
online. See Xia and Li (2017, 2019) and Section S4 of the Supplementary material available at Biostatistics
online for a more detailed discussion on estimation of β

(t)
i and the associated tuning procedure. Moreover,

the error term satisfies that r(t)
i,j = cov

{
ε

(t)
k ,i,l , ε

(t)
k ,j,l

}
= ωSt ,i,j/(ωSt ,i,iωSt ,j,j). Therefore the element ωSt ,i,j of

the spatial precision matrix RSt , and in turn, the element ρSt ,i,j of the spatial partial correlation matrix RSt
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can be represented in terms of r(t)
i,j . Following Xia and Li (2017, 2019), a bias-corrected estimator of r(t)

i,j

is obtained from fitting the regression model (2.4),

r̂(t)
i,j =

{
−r̃(t)

i,j − r̃(t)
i,i β̂

(t)
i,j − r̃(t)

j,j β̂
(t)
j−1,i, when 1 ≤ i < j ≤ p

r̃(t)
i,i , when 1 ≤ i = j ≤ p,

where r̃(t)
i,j = (nq)−1

∑n
k=1

∑q
l=1 ε̂

(t)
k ,i,l ε̂

(t)
k ,j,l is the sample covariance between the residuals, ε̂

(t)
k ,i,l = Y (t)

k ,i,l −
Ȳ (t)

i,l − (Y (t)
k ,−i,l − Ȳ

(t)
·,−i,l)

Tβ̂
(t)

i , Ȳ (t)
i,l = n−1

∑n
k=1 Y (t)

k ,i,l , and Ȳ
(t)
·,−i,l = n−1

∑n
k=1 Y (t)

k ,−i,l . Based on the estimator
r̂(t)

i,j , we further obtain a bias-corrected estimator of the element ρSt ,i,j of the spatial partial correlation
matrix RSt as

ρ̂St ,i,j = r̂(t)
i,j /{r̂(t)

i,i r̂(t)
j,j }1/2, 1 ≤ i < j ≤ p, t = 1, 2.

We then construct our test statistic for the pair of hypotheses (2.2) as

Wi,j = (ρ̂S1,i,j − ρ̂S2,i,j)

�̂
1/2
i,j

, 1 ≤ i < j ≤ p,

where �̂i,j is an estimator of var
(
ρ̂S1,i,j − ρ̂S2,i,j

)
. We next develop such an estimator that incorporates the

between-sample dependency of the paired samples.

2.3. Variance correction

We first recognize that the expression for the variance term var
(
ρ̂S1,i,j − ρ̂S2,i,j

)
is quite involved. To

alleviate this issue, we introduce an intermediate term, Ũ (t)
i,j =

{
r(t)

i,j − U (t)
i,j

}
/
{

r(t)
i,i r(t)

j,j

} 1
2
, where U (t)

i,j =
(nq)−1

∑n
k=1

∑q
l=1

[
ε

(t)
k ,i,lε

(t)
k ,j,l − E

{
ε

(t)
k ,i,lε

(t)
k ,j,l

}]
. Lemma S.2.1 in the Supplementary material available at

Biostatistics online implies that the difference between ρ̂St ,i,j and Ũ (t)
i,j is negligible. Consequently, we

estimate var
(
ρ̂S1,i,j − ρ̂S2,i,j

)
by developing an estimator for

�i,j = var
{

Ũ (1)
i,j − Ũ (2)

i,j

}
.

For the independent two-sample setting, �i,j = θ
(1)
i,j +θ

(2)
i,j , where θ

(t)
i,j = var

{
Ũ (t)

i,j

}
, t = 1, 2. Based fur-

ther on the observation that var
{

Ũ (t)
i,j

}
= var

[
ε

(t)
k ,i,lε

(t)
k ,j,l/{r(t)

i,i r(t)
j,j }1/2

]
/(nq) =

[
1 + {β(t)

i,j }2r(t)
i,i /r(t)

j,j

]
/(nq),

we estimate θ
(t)
i,j by

θ̂
(t)
i,j = 1

nq

[
1 +

{
β̂

(t)
i,j

}2
r̂(t)

i,i /r̂(t)
j,j

]
, 1 ≤ i < j ≤ p, t = 1, 2. (2.5)

For the paired samples, however, it is crucial to account for the between-sample spatial–temporal
dependency as presented in �S1,2 and �T1,2 when estimating �i,j. Next, we derive such an estimator of
�i,j. Later in Section 3, we show that this estimator is accurate, in the sense that its scaled version achieves
an op(1/ log p) convergence rate. This error rate is essential for the subsequent asymptotic false discovery
control in multiple testing.
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The next proposition gives an explicit expression of �i,j under the dependent setting. Its proof is given in
the Supplementary material available at Biostatistics online. The key is the separable spatial and temporal

dependence structures between the paired samples, and the decoupling of ρ
(1,2)

i,j;l1,l2
= corr

{
ε

(1)

k ,i,l1
, ε(2)

k ,j,l2

}
as

ρ
(1,2)

i,j;l1,l2
= ρS1,2,i,j PT1,2,l1,l2

, where ρS1,2,i,j =
√

r(1)
i,i r(2)

j,j �S1,i,·�S1,2�S2,·,j accounts for the spatial correlation,
and PT1,2,l1,l2

captures the temporal dependency. Here �S1,i,· denotes the ith row of the matrix �S1 , and
�S2,·,j denotes the jth column of �S2 .

PROPOSITION 2.1 Under the data distribution (2.3), we have,

�i,j = θ
(1)
i,j + θ

(2)
i,j − 2

nq2

(
ρS1,2,i,iρS1,2,j,j + ρS1,2,i,jρS1,2,j,i

)‖PT1,2‖2
F , (2.6)

for 1 ≤ i < j ≤ p, where ‖ · ‖F denotes the Frobenius norm.

Define 	
(1,2)
i,j = ρS1,2,i,j · tr(PT1,2)/q, which is the correlation coefficient ρS1,2,i,j scaled by the term

tr(PT1,2)/q, and tr(·) denotes the matrix trace. We observe that

E

{
1

nq

n∑
k=1

q∑
l=1

ε
(1)

k ,i,lε
(2)

k ,j,l

}
=

√
r(1)

i,i r(2)
j,j ρS1,2,i,j tr(PT1,2)/q =

√
r(1)

i,i r(2)
j,j 	

(1,2)
i,j .

Therefore, we can estimate 	
(1,2)
i,j by

	̂
(1,2)
i,j = ˆcov(ε

(1)
·,i,·, ε

(2)
·,j,·)/

√
r̂(t)

i,i r̂(t)
j,j , and ˆcov(ε

(1)
·,i,·, ε

(2)
·,j,·) = 1

nq

n∑
k=1

q∑
l=1

ε̂
(1)

k ,i,l ε̂
(2)

k ,j,l . (2.7)

Correspondingly, when �Tt , �T1,2 and thus PT1,2 are known, we can estimate �i,j by

�̂i,j = θ̂
(1)
i,j + θ̂

(2)
i,j − 2

nq

{
	̂

(1,2)
i,i 	̂

(1,2)
j,j + 	̂

(1,2)
i,j 	̂

(1,2)
j,i

} q‖PT1,2‖2
F

tr(PT1,2)
2

. (2.8)

We show in Section 3 that �̂i,j in (2.8) provides an accurate estimation of �i,j, with an error rate of order
op(1/ log p), when �Tt and �T1,2 are known.

When �Tt and �T1,2 are unknown, we first estimate PT1,2 by

P̂
(d)

T1,2
= 1

np

n∑
k=1

p∑
i=1

[{
Y (1,d)

k ,i,· − 1

np

n∑
k=1

p∑
i=1

Y (1,d)

k ,i,·

}T {
Y (2,d)

k ,i,· − 1

np

n∑
k=1

p∑
i=1

Y (2,d)

k ,i,·

}]
, (2.9)

where Y (t,d)

k ,i,· is the ith row of Y (t,d)

k = X (t)
k �̂

−1/2

Tt
, and �̂Tt is an estimator of �Tt . We then plug (2.9) into

(2.8). Again we show in Section 3 that this estimator also provides an accurate estimation of �i,j, with an
error rate of order op(1/ log p), when �Tt and �T1,2 are unknown.

We make a few remarks about our proposed variance correction. First, a crucial component of our
method is to pool data information of the p-dimensional spatial and q-dimensional temporal measurements
of n subjects in our estimations. The data pooling is possible due to the facts that E{Y (1) · (Y (2))T} =
tr(PT1,2) · �S1,2 and E{(Y (1))T · (Y (2))} = tr(�S1,2) · PT1,2 . Consequently, we can pool the columns of Y (t)
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to estimate �S1,2 , and the rows of Y (t) to estimate PT1,2 , up to a constant. More specifically, when �Tt

and �T1,2 are known, we pool 2nq samples to estimate the within-sample variance as in (2.5), and the
between-sample spatial dependency as in (2.7) and (2.8). When �Tt and �T1,2 are unknown, we also pool

2np samples to obtain the estimates �̂
−1/2

Tt
, t = 1, 2, and estimate the temporal dependency between the

before-stimulus scan and the after-stimulus scan as in (2.9). Such data pooling is the main difference
between our method and a naive solution, which estimates the dependency between the paired samples

by the usual sample covariance, namely, estimating cov
{
ε

(1)

k ,i,l1
, ε(2)

k ,j,l2

}
by n−1

∑n
k=1 ε̂

(1)

k ,i,l1
ε̂

(2)

k ,j,l2
, for each

1 ≤ i < j ≤ p, 1 ≤ l1, l2 ≤ q. Note that, the latter approach only uses n observations to estimate the
dependence structure without any data pooling, and as a result, it cannot guarantee the estimation error
rate required to ensure the performance of the test.

Second, we note that the spatial and temporal covariances �S1,2 and PT1,2 are only identifiable up to
a constant. However, this does not affect our test statistic, nor our variance estimation. This is because,
when replacing (�S1,2 , PT1,2) with (c�S1,2 , PT1,2/c), where c is any positive factor, the terms 	

(1,2)
i,j and

‖PT1,2‖2
F/tr(PT1,2)

2 remain the same, in which the factor c is canceled.
Third, Chen and Liu (2018) developed a variance correction method for matrix-valued data, but for a

single group of samples. In contrast, we perform variance correction for two stages of samples from the
same population. We first separate the spatial and temporal structures, so that the resulting test statistics
do not require variance correction within each sample. Our variance correction differs from that of Chen
and Liu (2018) considerably. On the other hand, if the temporal covariance between two stages has some
particular structure, e.g., if it is sparse, then the method of Chen and Liu (2018) may be applied to our

procedure, by thresholding P̂
(d)

T1,2
in (2.9) accordingly. In this article, however, we do not impose any

structural condition on the temporal dependence, and thus we use the general sample covariance estimator
in (2.9) instead.

2.4. Multiple testing

We next develop a multiple testing procedure for H0,i,j : ρS1,i,j = ρS2,i,j, 1 ≤ i < j ≤ p, so to identify
spatial locations with their conditional dependence changed before and after the stimulus. With a total of
p(p − 1)/2 simultaneous tests, the key is to control false discovery. Let h be the rejection threshold value
such that H0,i,j is rejected if |Wi,j| ≥ h, and H0 := {(i, j) : ρS1,i,j = ρS2,i,j, 1 ≤ i < j ≤ p} be the set of true
nulls. Then the false discovery proportion (FDP) and the FDR are computed as

FDP(h) =
∑

(i,j)∈H0
I (|Wi,j| ≥ h)∑

1≤i<j≤p I (|Wi,j| ≥ h) ∨ 1
, FDR(h) = E{FDP(h)}.

Our multiple testing procedure is based on the test statistic Wi,j derived in Section 2.2, with the corrected
variance estimates �̂i,j derived in Section 2.3. The rest of the procedure is similar to that of the two-sample
independent test of Xia and Li (2019). We thus only outline the main steps here. First, we compute the
paired-test statistics Wi,j in (2.5) for all 1 ≤ i < j ≤ p. Next we estimate the FDP by

ˆFDP(h) = 2{1 − 
(h)}(p2 − p)/2∑
1≤i<j≤p I (|Wi,j| ≥ h)1

,

where 
(·) is the standard normal cumulative distribution function. Here, we conservatively estimate |H0|
by (p2 − p)/2, as it is at maximum (p2 − p)/2 and is close to (p2 − p)/2 when RS1 − RS2 is sparse. Next,
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we compute the rejection threshold value ĥα under a given significance level α as

ĥα = inf
{

0 ≤ h ≤ 2(log p)1/2 : ˆFDP(h) ≤ α
}

. (2.10)

If ĥα does not exist, we set ĥα = 2(log p)1/2. Finally, we reject H0,i,j if and only if |Wi,j| ≥ ĥα for each
1 ≤ i < j ≤ p. In Section 3, we show that the above multiple testing procedure can control FDR at the
pre-specified level asymptotically.

3. THEORY

We study in this section the asymptotic properties of the proposed testing procedure. In the interest of
space, we present all the regularity conditions (A1)–(A7) in the Supplementary material available at
Biostatistics online. We first show that the corrected variance estimator of �i,j we develop in Section 2.3
achieves the estimation error rate of op(1/ log p). We then show that, based on such an error rate, the
subsequent multiple testing procedure can control the false discovery asymptotically.

When �Tt and �T1,2 are known, our variance estimator is �̂i,j as given in (2.8). The next proposition
establishes its error rate.

PROPOSITION 3.1 Suppose (A1), (A3) and (A5) hold. Then we have

max
i,j

|nq(�̂i,j − �i,j)| = op(1/ log p).

When �Tt and �T1,2 are unknown, we denote our variance estimator as �̂
(d)
i,j , which is obtained by

plugging the estimator P̂
(d)

T1,2
in (2.9) into (2.8). The next proposition establishes its error rate.

PROPOSITION 3.2 Suppose (A1), (A3), (A6), and (A7) hold, then we have

max
i,j

|nq(�̂
(d)
i,j − �i,j)| = op(1/ log p).

The above two propositions show that, the variance estimation error is bounded by the same error rate
asymptotically, when �Tt and �T1,2 are unknown and when they are known.

The next theorem shows that, for the dependent samples, as long as the majority of the regression
residuals are not highly correlated with each other under the null hypothesis, then the FDR can be controlled
asymptotically at the pre-specified level α following the multiple testing procedure outlined in Section 2.4.

THEOREM 3.1 Let �0 = |H0| and � = (p2 − p)/2. Suppose �0 ≥ c̃0p2 for some constant c̃0 > 0, and
p ≤ c̃1(nq)c̃2 for some c̃1, c̃2 > 0. Let ĥα denote the threshold value in (2.10). Then, when (A1)-(A5) hold
and �Tt and �T1,2 are known, or when (A1)–(A4), (A6) and (A7) hold and �Tt and �T1,2 are unknown,
we have

FDR(ĥα)

α�0/�
→1,

FDP(ĥα)

α�0/�

p→ 1, as (nq, p) → ∞.

In addition to false discovery control, the asymptotic power analysis is another interesting problem. It
relies on the specific structure of the connectivity network. In Section 4, we conduct extensive simulations
to study the power of our test under numerous network structures, and we leave the theoretical power
analysis as future research.
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4. SIMULATIONS

4.1. Empirical FDR and power with and without variance correction

We conduct numerous simulations to study the finite sample performance of our proposed variance-
corrected testing procedure. We also compare with the two-sample test of Xia and Li (2019), which
ignores the correlation before and after the stimulus and does not correct the variance accordingly. In all
the simulations, we use Lasso to estimate the regression coefficient β

(t)
i , and use the banded covariance

approach to estimate �Tt . We set the FDR level at α = 1%.
We examine a set of spatial and temporal dimensions, (p, q) ∈ {(200, 50), (200, 200), (800, 200)},

while we fix the sample size at n = 15. We consider two temporal covariance structures: an autoregressive
structure, where �Tt = (σTt ,i,j), σTt ,i,j = 0.4|i−j| if t = 1, and σTt ,i,j = 0.5|i−j| if t = 2, 1 ≤ i, j ≤ p, and
a moving average structure, where �Tt = (σTt ,i,j), σTt ,i,j = 1/(|i − j| + 1) for |i − j| < 3 if t = 1, and
σTt ,i,j = 1/(|i − j| + 1) for |i − j| ≤ 4 if t = 2. We also consider three spatial covariance structures: a
banded graph, with bandwidth equal to 3 (Zhao and others, 2012), a hub graph, with rows and columns
evenly partitioned into 20 disjoint groups, and a small-world graph, with 5 starting neighbors and 5%
probability of rewiring (van Wieringen and Peeters, 2016). We first generate �S1 according to one of the
above spatial structures, then construct �S2 by randomly eliminating 50% of the edges of �S1 .

Moreover, we consider two settings of correlation patterns before and after the stimulus. In Setting I,
we set �S1,2 = γ�S1 , where γ is the overall correlation level and |γ | ≤ 1. Since γ plays its role through
γ 2, its sign does not matter, and we choose γ ∈ {0, 0.2, 0.4, 0.6}. When γ = 0, it reduces to the two-sample
independent case, whereas a larger value of γ implies a stronger before-and-after stimulus correlation. We
next set PT1,2 as a diagonal matrix with PT1,2,i,i = −1 if i ≡ k (mod 15), k ∈ {1, 3, 5}, and 1 otherwise.
Here for three positive integers a, b and c, a ≡ b (mod c) means that, when divided by c, a and b have
the same remainder that is non-negative and smaller than c. In this setting, it follows that

(ρ
(1,2)

S1,2,i,iρ
(1,2)

S1,2,j,j + ρ
(1,2)

S1,2,i,jρ
(1,2)

S1,2,j,i) = γ 2
√

r(1)
i,i r(2)

i,i r(1)
j,j r(2)

j,j (ωS2,i,iωS2,j,j + ωS2,i,jωS2,j,i) > 0,

as long as γ > 0, where we utilize the facts that �S1,2 = γ�S1 = γ�−1
S1

, and �S2 is a positive definitive
matrix. Correspondingly, �i,j is smaller than that of the independent case, and the test statistic Wi,j would
be larger than that without variance correction in its absolute value. For this setting, the two-sample test
without variance correction is to yield a smaller power, as it is more conservative in rejecting the null
hypothesis in this setting.

In Setting II, we set PT1,2 in the same way, but set �S1,2,i,j = γ ·�S1,i,j(−1)i+j, if i �= j, and γ ·�S1,i,i(1−
2 · 1[i ≡ k (mod 7), k ∈ {1, 3, 5}]) if i = j, where 1(·) is the indicator function. In this setting, we no
longer have a simplified expression for ρ

(1,2)

S1,2,i,iρ
(1,2)

S1,2,j,j + ρ
(1,2)

S1,2,i,jρ
(1,2)

S1,2,j,i, but empirically, we have observed
that this term is negative for about half of (i, j) pairs regardless of the choice of the spatial structure and the
dimension p. For those pairs, �i,j is larger than that of the independent case, and the test statistic Wi,j would
be smaller than that without variance correction in its absolute value. For this setting, the two-sample test
without variance correction is to yield an overestimated FDR in this setting.

Tables 1 and 2 report the empirical FDR and the empirical power, both in percentage, out of 100 data
replications for the two settings, respectively. We make the following observations.

For Setting I, when (p, q) = (200, 50), the test with variance correction controls the FDR around the
anticipated level of α = 1%, whereas the test without variance correction yields a much lower FDR than
the significance level. Moreover, as the correlation strength γ increases, the power of the test with variance
correction improves considerably compared to the test without correction. Similar qualitative patterns are
observed for (p, q) = (200, 200) and (p, q) = (800, 200).
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For Setting II, for different combinations of (p, q) and spatial structures, the test with variance correction
again controls the FDR close to the significance level, while the test without correction fails to control
FDR as γ increases. When (p, q) = (200, 50), the test with correction is slightly inferior to that without
correction for the banded graph in terms of power. This is not surprising though, as it is attributed to the
inflated FDR. For other spatial structures, the test with correction clearly outperforms the one without
correction. When (p, q) = (200, 200), we observe that the power of both tests increases to 100% or close.
For FDR, the inflation issue still remains for the test without correction. When (p, q) = (800, 200), we
observe a similar qualitative pattern.

In summary, our proposed test with variance correction can control the false discovery and attain a
good power for a range of strength of correlation before and after the stimulus. In contrast, the test without
correction has inferior power performance for Setting I, and fails to control the FDR and yields an inflated
power for Setting II as this correlation increases. We also report the mean squared error of �̂(d) in Section
S5 of the Supplementary material available at Biostatistics online.

4.2. Sensitivity analysis

We next carry out sensitivity analysis to evaluate the performance of our test when the data deviates from
the matrix normal distribution. We first replace the normal distribution by a t distribution. Specifically, we
follow the data generation mechanism as before, while we set �S1,2 as a diagonal matrix with �S1,2,i,i =
γ ·�S1,i,i(1−2 ·1[i ≡ k (mod 7), k ∈ {1, 3, 5}]) and γ = 0.6. Since a normal random vector X ∼ N (0, �)

can be represented as X = �1/2Z , where Z ∼ N (0, Ip), we replace the Gaussian entries in Z with t-
distributed random variables with degree of freedom df ∈ {4, 6, 8}. We report the empirical FDR and
power out of 100 data replications in Table 3, part I. It is seen that, our test manages to control the FDR
reasonably well, and attains a good power under different dependence structures.

We then examine the performance of our method with regard to the off-diagonal Kronecker product
structure, i.e., cov(vec{X(1)}, vec{X(2)}) = �S1,2 ⊗�T1,2 .We again follow the data generation mechanism as
before, but set �S1,2 as a diagonal matrix with �S1,2,i,i = γ ·�S1,i,i(1 − 2 · 1[i ≡ k (mod 7), k ∈ {1, 3, 5}]),
γ = 0.6, and (p, q) = (200, 50). We further perturb �1,2 = �S1,2 ⊗ �T1,2 in two steps: we randomly
sample p�% entries of �1,2, where p� ∈ {0, 1, 5, 10}, then replace those entries with i.i.d. Gaussian random
variables of mean zero and standard deviation ν, where ν = l� × the magnitude for the entries of �1,2,
and l� ∈ {0.1, 1}. We report the empirical FDR and power out of 100 data replications in Table 3, part II.
It is seen that, our test maintains a reasonably good performance in this setup too.

These results show that our method is relatively robust with regard to the joint matrix normal assumption
(2.1). We also comment that, it is possible to extend our test to semiparametric normal copula setting. Liu
and others (2012) and Xue and Zou (2012) studied the vector-valued case. Following a similar idea of
marginal monotonic transformation, it is possible to develop a paired test in the matrix-valued setting. We
leave the full investigation as future research.

5. AD DATA ANALYSIS

AD is an irreversible neurodegenerative disorder and is characterized by progressive impairment of cog-
nitive and memory functions. It is the leading form of dementia in the elderly subjects. With the aging
of the worldwide population, the number of affected people is rapidly increasing and is projected to be
13.8 million in the United States, and 1 in 85 worldwide by year 2050 (Brookmeyer and others, 2007,
2011). It thus has become an international imperative to understand, diagnose, and treat this disorder.
Accumulated evidences have suggested that alterations in brain connectivity networks are predictive of
cognitive function and decline, and hold crucial insights about the disease pathology of AD (Fox and
Greicius, 2010).
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Fig. 1. Top 10 differentiating links of the brain connectivity networks of the 23 subjects of the ADNI database before
and after the conversion from MCI to AD. All the associated p-values are smaller than 1e−13. Table 4 displays the
status of these links (being enhanced or weakened after the conversion).

We analyzed a dataset from the Alzheimer’s Disease Neuroimaing Initiative (ADNI). ADNI is an
ongoing, longitudinal, multi-center study designed to develop clinical, imaging, genetic, and biochemical
biomarkers for the early detection and tracking of AD. We focused on 23 subjects from ADNI who
experienced conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD during
the 24-month follow-up. The primary scientific question of interest is to investigate the change of brain
connectivity patterns before and after the conversion. All fMRI scans were resting-state and preprocessed,
including slice timing correction, motion correction, spatial smoothing, denoising by regressing out motion
parameters, white matter and cerebrospinal fluid time courses, and band-pass filtering. The data were then
aligned and parcellated using the Anatomical Automatic Labeling atlas (Tzourio-Mazoyer and others,
2002). The resulting data are a region by time matrix for each subject, with the spatial dimension p = 116
and the temporal dimension q = 130.

We first examined the quantile–quantile plot, which shows no clear deviation from the normal distri-
bution. We next applied the testing procedure of Aston and others (2017) to test if the data conforms with
the Kronecker product structure. The p-values of the test before and after the conversion are 0.17 and
0.11, respectively, which suggests that the product structure seems to reasonably hold for this dataset. We
then applied our proposed variance-corrected testing procedure to this data. In our analysis, we did not
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Table 4. Top 30 differentiating links of the brain connectivity networks of the 23 subjects of the ADNI
database before and after the conversion from MCI to AD. The last column shows the direction of the
link change. “+” represents the link gets enhanced after the conversion, and “−” represents the link gets
weakened after the conversion

Rank Differentiating links p-value +/−
1 Cerebellum_Crus1_L↔Temporal_Inf_R 0 −
2 Temporal_Pole_Sup_R↔Occipital_Mid_L 1.11e−16 −
3 Temporal_Pole_Mid_R↔Occipital_Sup_L 2.22−16 +
4 Temporal_Pole_Mid_R↔Occipital_Mid_L 3.33−16 +
5 Paracentral_Lobule_R↔Rolandic_Oper_L 7.77e−16 +
6 Cerebellum_Crus2_L↔Frontal_Sup_Orb_R 9.99e−15 −
7 Cerebellum_7b_L↔Frontal_Sup_Orb_R 1.07e−14 −
8 Cerebellum_7b_R↔Occipital_Mid_R 1.74e−14 +
9 Cerebellum_8_R↔Calcarine_R 2.72e−14 +
10 Temporal_Inf_L↔Fusiform_L 3.30e−14 −
11 Fusiform_R↔Cuneus_R 2.02e−13 −
12 Cerebellum_Crus2_L↔Temporal_Inf_R 3.85e−13 −
13 Occipital_Inf_R↔Rectus_L 7.37e−13 +
14 Cerebellum_7b_L↔Fusiform_R 9.01e−13 +
15 ParaHippocampal_R↔Frontal_Inf_Orb_L 1.62e−12 +
16 Temporal_Pole_Mid_R↔Temporal_Pole_Sup_L 2.77e−12 +
17 Heschl_L↔Lingual_R 3.22e−12 −
18 Cerebellum_10_R↔Olfactory_R 3.46e−12 +
19 Cerebellum_9_L↔Frontal_Mid_Orb_L 4.89e−12 −
20 Cerebellum_Crus1_R↔Cerebellum_Crus1_L 9.00e−12 −
21 Cerebellum_10_R↔Frontal_Mid_Orb_R 1.42e−11 +
22 Cerebellum_10_L↔Frontal_Mid_Orb_R 1.75e−11 −
23 Cerebellum_Crus1_L↔Frontal_Mid_Orb_L 1.96e−11 +
24 SupraMarginal_L↔Cuneus_R 2.45e−11 −
25 Cerebellum_6_L↔Cerebellum_Crus2_L 3.70e−11 +
26 Cerebellum_7b_L↔Rectus_L 4.96e−11 −
27 Cerebellum_3_R↔Frontal_Med_Orb_R 5.69e−11 +
28 Insula_R↔Frontal_Inf_Oper_R 5.88e−11 −
29 Angular_R↔Angular_L 7.00e−11 −
30 Cerebellum_7b_L↔Temporal_Inf_R 7.02e−11 +

correct for potential confounder effects, but our test can be equally applied to the corrected data. Figure 1
plots those top differentiating links whose corresponding p-values are smaller than 1e−13, and the asso-
ciated brain regions visualized with the BrainNet Viewer (Xia and others, 2013). Table 4 further reports
the top 30 links that were found different before and after the conversion, with their associated p-values
and the directions of the change. It is seen that the differentiating links concentrate on the cerebellum.
The cerebellum is critical in the distributed neural circuits subserving not only motor function but also
autonomic, limbic, and cognitive behaviors. There is recently increased interest in exploring the role of
the cerebellum in neurodegenerative disorders, in particular AD (Jacobs and others, 2018). Our findings
provide a useful support to the existing literature.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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The computer code in R for the simulation and data analysis can be found at https://github.com/Elric2718/
PairedTestPrecisionMatrix with the commit number 631c4e4. The Alzheimer’s disease dataset can be
found at https://doi.org/10.6084/m9.figshare.9643010.v3.

ACKNOWLEDGMENTS

The authors thank the Associate Editor and two anonymous reviewers for constructive suggestions and
questions that helped improve the manuscript.

Conflict of Interest: None declared.

Funding

NSFC (11771094, 11690013) and The Recruitment Program of Global Experts Youth Project to Y.X. (in
part); NSF (DMS-1613137) and NIH (R01AG034570 and R01AG061303) to L.L. (in part).

REFERENCES

AHN, M., SHEN, H., LIN, W. AND ZHU, H. (2015). A sparse reduced rank framework for group analysis of functional
neuroimaging data. Statistica Sinica 25, 295.

ANDERSON, T. W. (2003). An Introduction to Multivariate Statistical Analysis. New York: John Wiley and Sons, Inc.

ASTON, J. A. D, PIGOLI, D. AND TAVAKOLI, S. (2017). Tests for separability in nonparametric covariance operators of
random surfaces. The Annals of Statistics 45, 1431–1461.

BICKEL, P. J. AND LEVINA, E. (2008). Regularized estimation of large covariance matrices. The Annals of Statistics 36,
199–227.

BROOKMEYER, R., EVANS, D. A., HEBERT, L., LANGA, K. M., HEERINGA, S. G., PLASSMAN, B. L. AND KUKULL,
W. A. (2011). National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s &
Dementia 7, 61–73.

BROOKMEYER, R., JOHNSON, E., ZIEGLER-GRAHAM, K. AND ARRIGHI, H. M. (2007). Forecasting the global burden
of Alzheimer’s disease. Alzheimers Dementia 3, 186–191.

CAI, F., GAO, L., GONG, H., JIANG, F., PEI, C., ZHANG, X., ZENG, X. AND HUANG, R. (2015). Network centrality of
resting-state fMRI in primary angle-closure glaucoma before and after surgery. PLoS One 10, e0141389.

CAI, T. AND LIU, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal of the American
Statistical Association 106, 672–684.

CAI, T., LIU, W. AND LUO, X. (2011). A constrained �1 minimization approach to sparse precision matrix estimation.
Journal of the American Statistical Association 106, 594–607.

CHEN, S., KANG, J., XING, Y. AND WANG, G. (2015). A parsimonious statistical method to detect groupwise
differentially expressed functional connectivity networks. Human Brain Mapping 36, 5196–5206.

CHEN, T., RYALI, S., QIN, S. AND MENON, V. (2013). Estimation of resting-state functional connectivity using random
subspace based partial correlation: a novel method for reducing global artifacts. Neuroimage 82, 87–100.

CHEN, X. AND LIU, W. (2018). Testing independence with high-dimensional correlated samples. The Annals of
Statistics 46, 866–894.

CHEN, X. AND LIU, W. (2019). Graph estimation for matrix-variate Gaussian data. Statistica Sinica 29, 479–504..

FICEK, B. N., WANG, Z., ZHAO, Y., WEBSTER, K. T., DESMOND, J. E., HILLIS, A. E., FRANGAKIS, C.,
VASCONCELLOS FARIA, A., CAFFO, B. AND TSAPKINI, K. (2018). The effect of tDCS on functional connectivity in
primary progressive aphasia. Neuroimage Clinical 19, 703–715.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/22/2/402/5601317 by U

niv of Southern C
alifornia user on 14 April 2021

https://github.com/Elric2718/PairedTestPrecisionMatrix with the commit number 631c4e4
https://github.com/Elric2718/PairedTestPrecisionMatrix with the commit number 631c4e4
https://doi.org/10.6084/m9.figshare.9643010.v3


Paired test of matrix graphs 419

FOX, M. D. AND GREICIUS, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in
Systems Neuroscience 4, 19.

FRISTON, K. J., ASHBURNER, J., KIEBEL, S. J., NICHOLS, T. E. AND PENNY, W. D. (2007). Statistical Parametric
Mapping: The Analysis of Functional Brain Images. Elsevier, 2011.

GIANAROS, P. J., SHEU, L. K., MATTHEWS, K.A., JENNINGS, J. R., MANUCK, S. B. AND HARIRI,A. R. (2008). Individual
differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity
of the amygdala. Journal of Neuroscience 28, 990–999.

HEDDEN, T., VAN DIJK, K. R. A., BECKER, J. A., MEHTA, A., SPERLING, R. A., JOHNSON, K. A. AND BUCKNER, R. L.
(2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. Journal
of Neuroscience 29, 12686–12694.

JACOBS, H. I. L., HOPKINS, D. A., MAYRHOFER, H. C., BRUNER, E., VAN LEEUWEN, F. W., RAAIJMAKERS, W. AND

SCHMAHMANN, J. D. (2018). The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline.
Brain 141, 37–47.

KANG, J., BOWMAN, F. D., MAYBERG, H. AND LIU, H. (2016a). A depression network of functionally connected
regions discovered via multi-attribute canonical correlation graphs. Neuroimage 141, 431–441.

KANG, S.-G., YOON, H.-K, CHO, C.-H., KWON, S., KANG, J., PARK, Y.-M., LEE, E., KIM, L. AND LEE, H.-J. (2016b).
Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light. Scientific
Reports 6, 36731.

LENG, C. AND TANG, C. Y. (2012). Sparse matrix graphical models. Journal of American Statistical Association 107,
1187–1200.

LIU, H., HAN, F., YUAN, M., LAFFERTY, J. AND WASSERMAN, L. (2012). High-dimensional semiparametric Gaussian
copula graphical models. The Annals of Statistics 40, 2293–2326.

LIU, W. (2013). Gaussian graphical model estimation with false discovery rate control. The Annals of Statistics 41,
2948–2978.

NARAYAN, M., ALLEN, G. I. AND TOMSON, S. (2015). Two sample inference for populations of graphical models with
applications to functional connectivity. arXiv preprint arXiv:1502.03853.

PECK, K. K., MOORE, A. B., CROSSON, B. A., GAIEFSKY, M., GOPINATH, K. S., WHITE, K. AND BRIGGS, R. W. (2004).
Functional magnetic resonance imaging before and after aphasia therapy. Stroke 35, 554–559.

QIU, H., HAN, F., LIU, H. AND CAFFO, B. (2016). Joint estimation of multiple graphical models from high dimensional
time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78, 487–504.

QUAEDFLIEG, C. W. E. M., VAN DE VEN, V., MEYER, T., SIEP, N., MERCKELBACH, H. AND SMEETS, T. (2015). Tempo-
ral dynamics of stress-induced alternations of intrinsic amygdala connectivity and neuroendocrine levels. PLoS
One 10, 1–16.

RUDIE, J. D., BROWN, J. A., BECK-PANCER, D., HERNANDEZ, L. M., DENNIS, E. L., THOMPSON, P. M., BOOKHEIMER,
S. Y. AND DAPRETTO, M. (2013). Altered functional and structural brain network organization in autism.
Neuroimage: Clinical 2, 79–94.

RYALI, S., CHEN, T., SUPEKAR, K. AND MENON, V. (2012). Estimation of functional connectivity in fMRI data using
stability selection-based sparse partial correlation with elastic net penalty. Neuroimage 59, 3852–3861.

SMITH, S. M., JENKINSON, M., WOOLRICH, M. W., BECKMANN, C. F., BEHRENS, T. E. J., JOHANSEN-BERG, H.,
BANNISTER, P. R., DE LUCA, M., DROBNJAK, I., FLITNEY, D. E. and others. (2004). Advances in functional and
structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219.

TZOURIO-MAZOYER, N., LANDEAU, B., PAPATHANASSIOU, D., CRIVELLO, F., ETARD, O., DELCROIX, N., MAZOYER,
B. AND JOLIOT, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/22/2/402/5601317 by U

niv of Southern C
alifornia user on 14 April 2021



420 Y. YE AND OTHERS

VAN MARLE, H. J. F., HERMANS, E. J., QIN, S. AND FERNÁNDEZ, G. (2010). Enhanced resting-state connectivity of
amygdala in the immediate aftermath of acute psychological stress. Neuroimage 53, 348–354.

VAN WIERINGEN, W. N. AND PEETERS, C. F. W. (2016). Ridge estimation of inverse covariance matrices from high-
dimensional data. Computational Statistics & Data Analysis 103, 284–303.

VAROQUAUX, G. AND CRADDOCK, R. C. (2013). Learning and comparing functional connectomes across subjects.
Neuroimage 80, 405–415.

WANG, Y., KANG, J., KEMMER, P. B. AND GUO, Y. (2016). An efficient and reliable statistical method for estimating
functional connectivity in large scale brain networks using partial correlation. Frontiers in Neuroscience 10, 123.

XIA, M., WANG, J. AND HE, Y. (2013). Brainnet viewer: a network visualization tool for human brain connectomics.
PLoS One 8, 1–15.

XIA, Y., CAI, T. AND CAI, T. T. (2015). Testing differential networks with applications to the detection of gene-gene
interactions. Biometrika 102, 247–266.

XIA, Y. AND LI, L. (2017). Hypothesis testing of matrix graph model with application to brain connectivity analysis.
Biometrics 73, 780–791.

XIA,Y. AND LI, L. (2019). Matrix graph hypothesis testing and application in brain connectivity alternation detection.
Statistica Sinica 29, 303–328.

XUE, L. AND ZOU, H. (2012). Regularized rank-based estimation of high-dimensional nonparanormal graphical
models. The Annals of Statistics 40, 2541–2571.

YIN, J.AND LI, H. (2012). Model selection and estimation in the matrix normal graphical model. Journal of Multivariate
Analysis 107, 119–140.

ZHAO, T., LIU, H., ROEDER, K., LAFFERTY, J. AND WASSERMAN, L. (2012). The huge package for high-dimensional
undirected graph estimation in R. Journal of Machine Learning Research 13, 1059–1062.

[Received November 4, 2018; revised August 20, 2019; accepted for publication September 17, 2019]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/22/2/402/5601317 by U

niv of Southern C
alifornia user on 14 April 2021


